
Transforming Affine Nested Loop Programs

to Dataflow Computation Model

Arkady Klimov

Institute of Design Problems in Microelectronics,

Russian Academy of Sciences, Moscow, Russia

arkady.klimov@gmail.com

Abstract. Programs in dataflow computation model are easy to parallelize.

Hence the problem of parallelizing a sequential program can be reduced to the

problem of transforming it to dataflow computation model. As target model we

use a computation model of the Parallel Dataflow Computing System (PDCS)

developed at IDPM RAN. In this paper a method of mapping a sequential

Fortran program to the target dataflow language is described. The source

programs must form a set of nested loops with the loop bounds and array

indices being affine functions of loop indices.

Keywords: parallelizing affine loops, polyhedral model, dataflow architecture.

1 Introduction

The well-known problem of automated parallelization of sequential programs [1] has

not received a satisfactory solution yet, especially in the domain of multiprocessors

with distributed memory. What makes it so difficult? I believe the main complication

is the target parallel programming model. It usually requires the programmer‘s full

control over the execution scheduling. Consider, for example, the MPI model, which

has been widely used for the last decades, and the GPGPU model developed recently.

While demonstrating more data parallelism and efficiency, the latter model, as

compared with the former one, forces the programmer to control more details of the

space-time layout of computation and communication. Тhe trend is towards more

thorough control over more and more aspects. Accordingly, the problem of automatic

parallelization [2] becomes more complicated.

The matter with dataflow model is quite different. The programming in it is

considered difficult due to its unaccustomedness rather than to its intrinsic features.

And the layout details here are hidden for the programmer. Though making some of

them visible may be useful, a lot of these details are still out of the static (programmer

or compiler) control. Accordingly, almost all of these details are to be controlled by

runtime system, foremost by hardware.

The main programmer concern in dataflow model is about the links, dependencies

between data objects (to say nothing about computations proper). In our model the

link is defined in the context of producer. In other words, each producer must know

where its results will be used. However, in traditional sequential languages, like

Fortran, an opposite paradigm is used: normally it is the consumer who initiates

access to data which is stored somewhere by a producer. We shall call the latter

paradigm gathering, as opposed to scattering paradigm which is the basis of our

dataflow model. From now on we shall use acronym DFL (a DataFlow Language) as

the name of a programming language for our computation model.

To transform a sequential Fortran program to DFL one must both extract its

inherent dataflow graph and invert the direction of the graph. And first of all we need

a means to represent the graph. In the paper we describe a method of building the

graph of sequential program and then show its use for generating equivalent DFL

program. In section 2 we define briefly the dataflow computation model and the

language DFL. Then, in section 3 we restrict the domain of all Fortran programs to

the so-called affine programs which are both usable in practice and amenable to

automatic translation to DFL. Further sections uncover the process of the

transformation. In section 4 the notion of selection tree is introduced and some

operations over them are defined. The idea of selection tree is motivated by the notion

of semantic effect of program statement, for which the selection tree is used as a

representation. In section 5 the notion of effect is defined thoroughly together with a

method to build corresponding selection tree (effect tree) for each program statement

from bottom to top along its AST. Then in section 6 the effect trees are used to build

the so-called state trees, which describe the state of memory at each program point.

Using these it is easy to obtain, for each read operator in the program, a so-called

LWT (Last-Write Tree), or a source tree (described in section 7) which altogether

comprise the description of the data flow graph of the program. In fact it is the

destination-to-source graph. But we need an opposite, the source-to-destination graph.

And thus in section 8 we propose an extension of selection trees to multi-valued trees

(former effect/state/source trees were single-valued) and use it to define the operation

of graph inversion. Its result is a set of multi-valued trees, which can then be treated

as dataflow program. In section 9 a straightforward process of transforming it into

DFL is described. Section 10 contains an example of program dataflow analysis and

transformation with the resulting parallelization effect. Further sections contain some

discussions, sketch improvement directions and compare our approach to automatic

parallelization with other existing ones.

2 Dataflow Computation Model

To present our computation model we use a programming language called DFL. A

program in DFL is a set of node declarations of the form:

 node name ports context-dcl;

 routine;

The first line is a node header. It specifies node name, list of ports (port names and

types) and context declaration. Context is a tuple of values (normally integers) which

serve as indices of node. In fact, the node declaration defines a set (not necessarily

finite) of node instances, or virtual nodes, that differ from each other with context.

Context declaration in the header is just a list of context field names. Optionally the

context type may be specified.

The node declaration can be viewed as a class declaration. Instances occur on

demand when token is send to a port of a node with some context. In a sense, the

context provides a virtual address of node instance. The ensemble of all possible

instances of all nodes declared in a program comprises the total virtual node space of

the program.

Node ports are like procedure parameters with the only difference that any port of

any virtual node is invoked independently. Such invocations will be referred to as

tokens. The node instance can fire when each of its ports gets a token. All these

tokens must have common context values and the same node class name. At a

moment of time there may be several virtual nodes ready to fire. They may fire in any

order or in parallel.

When node instance fires, a request is created which is then ready to be executed.

At the same time all tokens involved in the firing are removed from the virtual node

ports, while their values are copied into request. (If there occur several tokens on

some port of given node instance at the moment of firing, then arbitrary one of them

is used in the firing and others remain waiting for further firings). At a moment of

time there may be any number of ready requests, which may be then executed in any

order or in parallel. To execute the request means to execute the node‘s routine.

Routine is a normal sequential code which operates locally using port names and

context field names as input variables. The only ―side effect‖ of request execution

may be a number of tokens sent to other virtual nodes‘ ports. Thus all requests are

executed independently.

The token send statement has the form:

 v –> N.p{e1,…,ek}

where the type of expression v is the same as that of port p of node N and integer

expressions e1,…,ek yield the context of the target virtual node. It reads: ―send v to

port p of node N with context {e1,…,ek}‖. Or shorter: ―send v to N.p{e1,…,ek}‖.

The token send statement is not blocking. The token created moves by itself to

indicated virtual node port. No assumptions are made on behalf of the time needed by

a token to get to its target port and of the order different tokens arrive. At any moment

of time there is a number of moving tokens and a number of tokens residing at virtual

node ports.

The total computation is initiated by sending a number of input tokens from

outside and results in creating a number of output tokens. For certainty we assume

that input tokens are sent to special 1-port nodes whose name has suffix ―_in‖ and

output tokens are sent to special 1-port nodes which have empty routine and name

with suffix ―_out‖. Normal good program should terminate with no tokens residing

anywhere in the virtual space.

A program may also contain some constant declarations with keyword vconst

(see example below), which may vary from session to session. Their exact values are

specified from outside the system before the session.

In Fig.1 an example program in DFL is shown. There are 3 nodes including one

input and one output nodes. The program adds n numbers which come from outside as

 ai –> X1_in{i}

for i=0,…n-1 (port name for 1-port node may be omitted). The resulting sum is sent

back via node Sum_out (with empty context). Pascal-like syntax is used for

encoding routine which is a single statement or block preceded by some local

declarations. This program is highly parallel: if each virtual node executes in its own

processor the overall time would be O(log n) after last input token arrive. Doubling

method is used. Below we‘ll show a sequential Fortran program which this example

can be compiled from.

Fig.1. An example: parallel summation in DFL

3 Affine Programs

In DFL a node routine must be able to send computed value to any other node that

needs it. Hence to transform a Fortran program P to DFL one needs to predict, for

each write operation (i.e. assignment statement), the set of all read operations that

will use the value written. In fact, a description of algorithm graph ([3, chapter 6])

must be built, which parametrically describes the computation graph. The

computation graph is defined by simply running the program P for some input data. It

consists of two kinds of nodes: reads and writes, corresponding respectively to

executions of read or write memory operations in program P. There is a link from a

write node w to a read node if r reads the value written by w. In other words, r uses

the same memory cell as w and w is the last write to this cell before r.

We identify a separate read or write operation by a pair (m,Im), where m is a

program point and Im is an iteration vector of point m. (Iteration vector of point m is a

list of loop index values for all loops enclosing point m.) Using this pairs as graph

node identifiers we define the mapping

 FP : (r,Ir) → (w,Iw) (1)

which for a read node (r,Ir) yields the write node (w,Iw) that has written the value

being read, or yields None if no one value has been written before the read and thus

original contents of the cell is read.

However, for translation to DFL we need the reverse: for each write node to find

all read nodes (and there may exist several or none of them) which read that very

value written. So, we need the multi-valued mapping

GP : (w,Iw) → {(r,Ir)} (2)

vconst n:int;

node X1_in(b:real){i};

 if i mod 2 = 0

 then b –> X2.b{i div 2}

 else b –> X2.a{(i+1) div 2};

node X2(a:real,b:real){i};

 if i=n-1

 then a+b –> Sum_out {}

 else if (i+n) mod 2 = 0

 then a+b –> X2.b{(i+n) div 2}

 else a+b –> X2.a{(i+n+1) div 2};

node Sum_out(s:real){};

which for each write node (w,Iw) yields a set of all read nodes {(r,Ir)} that read that

very value written.

Unfortunately, it is hardly possible for an arbitrary program P to express these

mappings FP and GP explicitly and finitely. But there exist a well known and well

defined class of programs for which it is possible: the so-called affine (or linear as in

[3, chapter 6]) programs. The set of constructors used to build a statement S in our

subset of Fortran is presented on Fig.2.

Λ (empty statement)

A(i1,…,ik)=e (assignment, k≥0)

S1; S2 (sequence)

if c then S1; else S2; endif (conditional)

do v=e1,e2; S; enddo (DO-loop)

Fig.2. Affine program constructors.

The right hand side e of assignment may contain array element access

A(i1,…,ik), k≥0. All index expressions must be affine (see below). Conditional

expression c must be equivalent to e=0 or e>0 where e is an affine expression.

Bounds e1 and e2 of DO-loop must also be affine. Expression is affine if it is a sum

of enclosing loop variables or fixed parameters with literal integer coefficients.

At present, our framework admits only purely affine subroutines with all input and

output arrays passes as parameters. The transformer replaces the subroutine with

another one of the same name which passes all input array elements as tokens to

parallel subsystem and accepts results. The respective DFL code is generated and

loaded into the subsystem. In the future some of the restrictions may be lifted. In

particular, the analyzer will find the code region to be translated to DFL itself.

4 Selection Trees and Operations on Them

A selection tree [4] is a structure used to represent mappings like (1). Its syntax is

shown in Fig.3.

S-tree ::= None

| term

| (L-cond → S-treet : S-treef) (branching)

| (L-expr =: num var + var → S-tree) (integer division)

term ::= name { L-expr1 , … , L-exprk } (k≥0)

var ::= name

num ::= … | -2 | -1 | 0 | 1 | 2 | 3 | …

L-cond ::= L-expr = 0 | L-expr > 0 (affine condition)

L-expr ::= num | num var + L-expr (affine expression)

atom ::= None | name { num1 , … , numk } (ground term, k≥0)

Fig.3. Syntax of Selection Trees

A branching node like (c → T1 : T2) evaluates to T1 if conditional expression c

evaluates to true, otherwise to T2.

A division node like (e =: 2 q + r → T) introduces two new variables q,r that take

respectively the quotient and the remainder of integer division of integer value of e by

constant 2. They may be used in the sub-tree T together with all other variables the

tree depends on. But the whole tree does not depend on variables q and r as they are

bound variables. Notes on font styles: we normally use small bold letters as variables

of our object language while italic letters stand for variables in the meta-language

denoting an arbitrary object of certain kind. Hence bold italic denotes ‗arbitrary object

variable‘ and various capitals represent structures: vectors, lists, trees etc. Other

symbols or words usually stand for specific constants, function names etc.

Evaluation of a selection tree T may be specified by function [T,V] that maps a

tuple of integer values J (one value for each variable in V) to the domain of atoms.

The variable list V must contain all free variable of tree T. We call the occurrence of

variable v free if it is not bound outside by a division node. To apply function [T,V]

to number vector J we assign values Ji to variables Vi, evaluate all expressions to

numbers and then simplify the result to atom. The formal definition of symbol  is

presented in Fig.4.

 [None,V]J = None

 [X{e1, …, ek },V]J = X{z1,…, zk }, where zi =  [ei,V]J

 [(c → A:B),V]J = if  [c,V]J then  [A,V]J else  [B,V]J

 [(e =:m*q+r → A),V]J =  [A,V ++q++r] (J++jq++ jr),

where jq, jr are integer numbers s.t.  [e,V]J = m * jq + jr, 0≤jr<m

 ―++‖ – append operator

Fig.4. Definition of selection tree semantic function [T,V]. It is assumed that semantic

functions of expressions [Ei,V]J and conditions [Сi,V]J are defined in a usual way.

We call two selection trees equivalent (≈) if their semantic functions are the same.

Having this equivalence in mind we define several operations over selection trees. All

operations must be defined correctly in the sense that if we replace an argument tree

by equivalent one then the result should be equivalent to the former.

The two following operations play the main role in our framework: seq(T1,T2) and

fold(v,e1,e2,T).

Operation seq(T1,T2) unifies values of its arguments in such a way that the non-

None value of T2 has the priority over that of T1. Formally:

 [seq(T1,T2),V]J = if [T2,V]J = None then [T1,V]J else [T2,V]J

To compute seq one may simply replace all None leaves in T2 with a copy of T1. As

we shall see later seq corresponds to sequential execution of two statements. Note that

seq is associative and has a unit: None. Thus it can be generalized to any number of

argument trees as well as to list of trees.

Operation fold(v,e1,e2,T) besides a single tree argument T has three additional

parameters: a variable v and two affine expressions e1 and e2 that do not depend on v

while the tree T itself may depend on v. The result is a tree T' that does not depend on

v. Its value must be as follows. Using assignment V=J for all free variables of e1, e2

and T but v, evaluate e1 to n1, e2 to n2 and consider sequence of values of T(v) for all

v from n1 to n2 in that order. Take the last non-None value in the sequence if any,

otherwise None.

The formal specification is

 [fold(v,e1,e2,T),V]J = seq({ [T, V++v]J++j | j in (n1..n2)}),

where n1 = [e1,V]J, n2 = [e2,V]J and ++ is append operator. Here we do not

require V not to contain v. But we assume that the latest occurrence of a variable has

priority in assignment V=J. Thus, e1 and e2 may contain v, but from an outer scope.

The computation of fold is not as simple. But the fundamental fact is that its result

does always exist and can be computed by an algorithm. In theory, this fact stems

from resolvability of Presburger arithmetics[5]. In practice, it resolves into Parametric

Integer Programming (PIP) problem which is known to be solvable [6]. Below we

shall see that fold is a counterpart to DO-loop statement.

There are also several helper operations on trees among which mention

equiv(T1,T2) and prune(T).

Operation equiv(T1,T2) yields a so-called predicate tree that contains no terms but

T{} and F{} only. It is specified formally as

[equiv(T1,T2),V]J = if [T1,V]J =[T1,V]J then T{} else F{}

It is easy to see that equiv(T1,T2) ≈ T{} iff T1 ≈ T2.

Operation prune(T) replaces a tree T by equivalent yet simpler one. It finds so-

called imperfect conditional nodes (subtrees) (c  T1 : T2) in which predicate c

always evaluates to the same boolean value. Such node can be replaced by respective

subtree (T1 or T2). The algorithm of prune traverses the tree and tests the set of

conditions on each path for compatibility. The test that checks a set of affine

equalities and inequalities for compatibility is known as Omega test [7]. It is a good

idea to apply prune immediately after seq, fold, equiv and other complex operations.

5 Effect Trees

Consider a program statement S, which is a part of an affine program P, and some k-

dimensional array A. Let (wA, IwA) denote an arbitrary write operation on an element

of A within a certain execution of statement S, or the totality of all such operations.

The effect of S with respect to A is a function

[S]: (p1,…,ps; q1,…,qk)  (wA,IwA) + None

that for each tuple of fixed external parameters p1,…,ps and indices q1,…,qk of

element of array A yields an element (wA,IwA) or None. The first result (wA,IwA)

indicates that this very write operation is the last among those that write to element

A(q1,…,qk) during execution of S with parameters p1,…,ps and the result None means

that there are no such operations.

To represent such functions it is feasible to use selection trees with program

statement labels as term names. We shall call them simply effect trees. For example,

consider as statement S the loop nest shown on Fig.5.

 do j=0,m-1

 do i=1,n

 A1: A(i+2*j) = some expression

 enddo

 enddo

Fig.5. An example loop nest S. The unique write statement is labeled as A1.

The set of all writes to array A (of size n+2*m) can be seen as that shown by Fig.6,

where time runs from left to right and from top to bottom, and each colored square

denotes a write to element A(q) depicted strictly above as a white square.

Fig.6. The totality of ‗write to A‘ operations in the loop nest S from Fig.5.

The violet (darker) squares correspond to last writes to each element. It is easy to

see that the respective effect may be represented as selection tree shown on Fig.7.

(q≥1 →

 (q≤2*m →

 (q-1=:2*j+r → A1{j,r+1})

 (q<=n+2*m-2 → A1{m-1,q-2*m+2} : None)

)

: None)

Fig.7. Selection tree representing effect function of loop nest S from Fig.5.

Now that we have defined operations seq and fold the algorithm of computing

effect tree of an arbitrary affine program fragment is straightforward. The set of rules

listed in Fig.7 does the job recursively. Here we assume that effect tree is built for k-

dimentional array A, k≥0. The result tree represents the statement‘ effect for element

A(q1,…,qk), where q1,…,qk are fixed variables that are not used in the program.

The algorithm proceeds upwards from primitives like empty and assignment

statements. Operation seq is used to compute effect of statement sequence having

computed the effect of component statements. Operation fold yields the effect of DO-

loop provided the effect of loop body. For conditional statement the effect is built just

by putting effects of branches into new conditional node provided that condition c is

affine.

 [] = None (empty statement)

 [S1;S2] = seq( [S1],  [S2]) (sequence)

 [LA: A(e1,…,ek)=e] = (assignments to A)

(q1=e1 → …(qk=ek → LA{I} : None)…: None)

where I is a list of all outer loop variables of this statement in P

 [LB: B(…)=e] = None (other assignments)

 [if c then S1; else S2; endif] = (c →  [S1] :  [S2]) (conditional)

 [do v=e1,e2; S; enddo] = fold(v,e1,e2, [S]) (DO-loop)

Fig.8. The rules for computing effect tree with respect to k-dimensional array A

6 State Trees

Consider an affine program P as a whole and a certain execution of it. Let there be

a read operation of array element A(e1,…,ek) at point (r,Ir). We need to determine

specific write operation (w,Iw) that has written the value being read.

We could achieve our goal if we knew this for each element of A. Thus we need to

compute, for any given values of fixed parameters P=p1,…,ps and array indices

Q=q1,…,qk and the point loop variables Vr=v1,…,vl, the coordinate (w,Iw) of write

statement that has written last time on array element A(q1,…,qs) before the point (r,Ir).

This information presents an effect of executing the program from the beginning up to

the point (r,Ir) with respect to array A. It can be expressed as a selection tree with

parameters P,Q,V, which may be called a state tree at program point r for array A.

To compute state trees for each program point the following method can be used.

So far for each block statement B in the affine program P we have computed the

tree [B] representing the effect of B. Now we are to compute for each block

statement B the tree [B] representing the state before B.

We start by setting

[P] = (q1≥l1→ (q1≤u1→

… (qk≥lk→ (qk≤uk→A_init{q1,…,qk} : None) : None) … (3)

: None) : None)

where term A_init{q1,…qk} signifies an untouched value of array element A(q1,…,qk)

and li, ui are lower and upper bounds of array dimensions (which are only allowed to

be affine functions of fixed parameters). This record signifies simply that all A‘s

elements are untouched before the whole program P.

Now consider the following cases:

1. Given [B1;B2]=T. Then also [B1]=T. The state before any starting part of B

is the same as that before B.

2. Given [B1;B2]=T. Then [B2]=seq(T, [B1]). The state after the statement B1

is that before B1 combined by seq with the effect of B1.

3. Given [if c then B1 else B2 endif] = T. Then [B1] = [B2] = T. The state

before any branch of if-statement is the same as before the whole if-statement.

4. Given [do v=e1,e2; B; enddo] = T. Then [B] = seq(T, fold(v,e1,v-1,[B])).

The state before the loop body B with the current value of loop variable v is

that before the loop combined by seq with the effect of all preceding iterations

of B.

The last form needs some comments. It is the case in which a limit of fold depends

on v. Thus the result tree will also depend on v. That tree involves the effect of all

iterations of the loop before the current one.

Using the rules 1-4 one can achieve (and compute the state in) any internal point of

program P. For speed, we do not compute the state with respect to array X in some

point if there are no accesses to X within the current block after that point. Also, we

compute only once the result of fold with variable upper limit and then use the result

both for state at the beginning of the body and for the effect of the whole loop.

7 Destination-to-Source Graph

Now we are ready to compute the destination-to-source graph FP of given affine

program P, which is specified by formula (1). The representation of the graph is a

collection of selection trees, one for each read operation r on array X. Each such tree

Tr depends on fixed parameters P and loop variables Vr of loops enclosing r. A tree

value indicates the write operation (w,Iw) that has written the value being read.

Note. One ought not to confuse our term destination-to-sorce graph with the term

def-use graph of an arbitrary unstructured program, which is often used in papers on

program analysis in optimizing compilers. In the latter case, nodes correspond to

static program points, not to their dynamic execution instances as in our case.

To compute the tree Tr for a given read operation X(e1,…,ek) we simply take the

state tree at immediately preceding program point and apply substitution [q1e1, …,

qkek]. After simplification with prune resulting trees are gathered as collection of

elements of the form

 ((r,Vr) Cr Tr), (4)

where Cr = (c1,…,cK) is a list of restrictions that describe iteration space (a set of

possible instantiations) of operation r. Usually this list contains bound conditions of

enclosing loops and conditionals of enclosing ifs. Due to this restriction list the tree Tr

itself can be freed of these conditions. This is done by the use of conditional-prune

operation that eliminates spare conditions under given restrictions. As result, the tree

Tr should not contain None. This is because the term None signifies, due to (3), that r

tries to read outside the range of array dimensions. Thus we get for free an easy way

of compile-time verification of array access bounds (for reading).

For the graph to be complete we add a pseudo-read operation for any array element

of any array X that was ever written. It is named (X_out, (q1,…,qk)) and the

restrictions involve the ranges of X‘s dimensions. The tree is computed from the state

tree at the very last point of program P, which is actually obtained as seq([P],[P]).

An additional analysis can be used to exclude arrays that are not used elsewhere. In

our current implementation we restrict out arrays to subroutine parameter names.

8 Multi-valued Trees and Graph Inversion

Now we are to compute the source-to-destination graph GP of given affine program

P, which is specified by formula (2). Conceptually, it is the inversion of destination-

to-source-graph FP. For representing it, however, we need another kind of selection

trees which represent functions whose values are sets of atoms rather than just atoms.

So, we extend the definition of selection (Fig.3) to multi-valued selection trees

(Fig.9). Two new constructors are added: (& A1 … An) collects together all values of

subtrees A1,…,An, and (@v→A) introduces new bound variable v universally

quantified. Fig.9 also shows new semantic rules. The first rule is changed so as to

yield empty set rather than element None. Other three old rules have left unchanged.

Two new rules describe semantics of the two new constructors. Note that the value of

@-tree may be infinite set. In practice, however, only finite sets are produced.

S-tree ::= …

| (& S-tree1 … S-treen) (finite union, n≥0)

| (@ v → S-tree) (infinite union)

 [None,V]J = {}

…

 [(& A1 … An),V]J = [Ai,V]J

 [(@v → A),V]J = [A,V++v]J++j

Fig.9. Syntax and Semantics of Multi-Valued Selection Trees

We represent the inverted graph as a collection of multi-valued trees Tw, one for

each write operation w on array X, which represents a function that maps parameter

vector P and iteration vector Iw to the set of respective read operations {(r,Ir)}.

To construct the source-to-destination graph we need to invert the destination-to-

source graph built so far. Another two operations on trees are used here.

Operation inverse((r,Vr),Cr,Tr) takes as input the form (4) and returns a collection

of elements of the form

 ((w,Vw) Tw), (5)

one for each non-None term w{e1,…,ek} of tree Tr. Actually, for each such term a set

of linear restrictions on that branch together with equalities ei=Vw,i is taken, of which

equality part is then resolved with respect to variables Vr as a System of Linear

Diophantine Equations (SLDE). All accompanying inequalities are then rewritten by

eliminating variables Vr and put together in the form of multi-valued tree Tw. All non-

None terms of that tree use name r. In case the solution space of SLDE is infinite the

respective number of @-nodes is created. Also, the SLDE-solver may produce new

division nodes. Several elements of the form (5) with the same name w are joined

together within new &-node Tw. Finally, the unified element of resulting graph GP

which is built in the form

 ((w,Vw) Cw Tw), (6)

where Cw = (c1,…,cK) is a list of restrictions that describe iteration space (a set of

possible instantiations) of operation w.

Operation inverse may be generalized to be applied to the whole graph. Also, it is

possible to apply inverse to multi-valued trees. This allows for self-verification: apply

inverse twice and compare result and original graphs for equivalence.

Operation simplify-tree(C,T) is intended to globally optimize the representation of

multi-valued tree T under condition list C so as to minimize its complexity as much as

possible. In addition, for each @-node, upper and lower bounds of variable v are

computed (in the form of affine expressions or a list of such expressions). Thus, the

resulting trees Tw are prepared to be effectively compiled into DFL.

There is also a special case of operation simplify-tree which is used when argument

is known to be a single-valued tree in fact. It strives to eliminate &- and @-nodes.

Note that the inverted graph will also contain trees for names like A_init which

describe all uses of input arrays. If for non-parameter array such a tree appear non-

None, it may be regarded as a signal of possible error of type ‘attempt to read

undefined array element’ with exact description of the error conditions.

9 Transforming Graph to DFL

Suppose we have built the source-to-destination graph Gp for some program P. The

simplest way of building DFL-code is to make a node for each write operation, or

assignment statement. Consider an arbitrary assignment w

 Xx: X(e1,…,ek) = E(r1,…,rp) (7)

to the element of k-dimentional array X (k≥0) of type t, which is enclosed in a loop

nest with loop variables v1, …, vl (l≥0). We assume that each assignment is supplied

with a unique label (Xx). Let the right hand side E contain p≥0 occurrences of

different read operations r1,…,rp of types t1,…,tp, each having the form

 Y(f1,…,fm), (m≥0)

For the statement w the graph contains element of the form (6). The general view of

the DFL-node is shown on Fig.10. The label of assignment becomes the name of

node. Each read operation in the right hand side becomes a separate port with some

standard name. Enclosing loop variables form the context of the node.

The first statement of the routine evaluates expression E in which port names are

used instead of read operations. (Tw) is the translation of multi-valued selection tree

Tw to Pascal, which responds for sending out the computed value a. Rules of

translation are shown on Fig.11. Each non-None term r{h1,…,hs} of Tw produces

send statement a->Wr.aj{h1,…,hs} where Wr is the label of assignment

containing the read r, and j is the number of respective array access in the right

hand side of the assignment (thus aj is the respective port name).

 node Xx(a_1:t1,…,a_p:tp) {v1,…,vl}

 var a:t;

 begin

 a:=E(a1,…,ap);

 (Tw)

 end

 Fig.10. The general view of translation for assignment (7)

The tree as a whole becomes a control structure providing necessary activation

conditions for these send statements. Note that the translation of division node is

improper here as it uses div and mod that produce incorrect result for negative

values of e. Translation for @ uses upper and lower bounds (l,u) of variable v

computed and inserted by operation simplify-tree. However the general case is more

complex: this tree vertex generally has the form (@v(l1 u1)…(lk uk)→T) and the total

range for variable v is defined as the union of ranges (li ui). Hence min and max

should be used to compute true l and u.

 (None) (empty statement)

 (r{h1,…,hs}) a->Wr.aj{h1,…,hs}

(c → T1:T2) if  (c) then  (T1) else  (T2)

 (e=:mu+v →T) begin u:=e div m; v := e mod m;  (T) end

 (& T1 … Tq) begin  (T1); … ;  (Tq) end

 (@v (l u) →T) for v:=l to u do (T)

Fig.11. Rules for translation of multi-valued selection tree to Pascal

Our translation is based on the idea that execution of affine program can be

replaced by execution of respective set of assignment statements in a feasible order.

The order is feasible if it agrees with dataflow dependences: if statement x produces

value for statement y then x executes before y. Hence, the activation order in data flow

model is feasible. On the other hand, each statement will eventually be executed as all

its predecessors have been executed and their results sent out.

One problem remains with statements whose nodes have no ports, for example

X[i]=0. In order to make such poor node to execute we add to it a special port of

type any and assure to send a token to. All poor nodes within a loop body are

activated from additional node declared out of the loop. In other words its context is

one element shorter. The node‘s routine contains a loop simulating the original loop.

In the loop body tokens are sent, one for each poor inner node. The additional nodes

are activated in the same way. On the top level a poor node is activated by sending a

token from the outside.

Also additional node is needed for each input array. For k-dimensional input array

X of type t, the node X_in is generated which has the context of size k and one port

of type t. Each input array element is sent from outside to respective node instance.

The node routine sends out the value according to the element of the graph named

X_init.

For each k-dimensional output array Y of type t the node Y_out is generated

with single port of type t and context of size k. Any token sent to it is automatically

directed to outside.

All fixed parameters are declared as vconst. Their values are loaded from

outside. The code that loads constants, sends inputs and receives outputs is generated

as a separate routine that replaces the body of original subroutine. This code is

executed in the main program on the host machine.

10 Example program

Consider the following illustrative example (Fig.12). Here the first loop rewrites input

array B into the wider internal array X, in which it is then summed up in pairwise

manner. The resulting DFL code is shown on Fig.13.

 SUBROUTINE SUMMA (B,N,sum)

 REAL(8) B(N), X(N*2-1),sum

 DO I=1,N

 X(I)=B(I)

 ENDDO

 DO I=1,N-1

 X(N+I)=X(2*I-1)+X(2*I)

 ENDDO

 sum=X(N*2-1)

 END

Fig.12. The summation program in Fortran

Note that the generated code looks much like that shown on Fig.1. Some local

optimizations are needed here. The main procedure is further compiled into code that

replaces the original subroutine SUMMA executed on the host machine. Using the

same parameter list it sends out elements of input arrays to dataflow process and

receives back the result values directly into out parameters.

The translation of this example took 1.14 seconds on PC. We tried a lot of other

example programs with no more than 10-20 lines of text (matrix multiplication, LU-

factorization, 2d-Jacoby, etc.). For sensible programs the compilation time normally

did not exceed 10 seconds. However, for some synthetic tests with very few lines but

complex index pattern the time could increase to several minutes and more. The most

time-consuming stage is usually the simplification of resulting trees.

Fig.13. The DFL code generated for subroutine SUMMA

11 Related work and conclusions

This paper is related to work in three different areas: in dependence analysis as it is

done in optimizing and parallelizing compilers, in transforming sequential affine

programs to other computational models and in dataflow architectures that were being

popular in 80-s.

The foundations of dependence (data flow) analysis for arrays have been well

established in 90-s by Feautrier [6,8], Puch[7], Maydan et al. [9], Maslov[10]. Their

methods use Omega test and Integer Programming libraries and, in principle, allow to

get exact solution for dependence for any pair of read and write reference in affine

program. However, for the purpose of parallelization, they were usually applied only

to check if dependence exists, not to get the complete description of dependence

graph. In our analysis we aim from beginning to the full description of dataflow

graph. We use selection trees not only to represent the result of analysis, but also

define a set of operations on such trees which hide inside all sophisticated integer

algorithms and thus simplify the explanation of program analysis. Our novel method

of building graph involves ascendant process of building effect trees and then a

descendant process of building state trees. These both use only information on write

operations. Then we hit each read operation against respective state tree and get all

dependences as a whole source function for this read. Finally, the dependence graph is

inverted to obtain all dependences for each write operation.

There is a hot interest to the problem of transforming ordinary programs to other

models of computations, especially in conjunction with parallelization. We use the

dataflow model of computation as the target. This model has been very popular in the

80‘s, but later all attempts to promote it failed. To our opinion, the reason of the

failure was people‘s attitude to dataflow as to a hardware model intended for

MODULE SUMMA;
type F1 = {i1:int[4]};
vconst N:int=0;

proc MAIN (B[N]:real, N:int, SUM:real) {};
var q_0:int;
begin
 for q_0 := 1 to N do
 send B[q_0] to B_in{q_0};
 receive SUM;
end;

node B_in(B:real) F1{q_0};
 send B to X_1.B_1{q_0};

node SUM_out(SUM:real) {};

node X_1(B_1:real) F1{I};
 if (N=1) then
 send B_1 to SUM_out
 else
 if (((I+1) mod 2)=0) then
 send B_1 to X_2.X_1{((I+1) div 2)}
 else
 send B_1 to X_2.X_2{(I div 2)};

node X_2(X_1:real,X_2:real) F1{I};
 if ((I-N)=(-1)) then
 send (X_1+X_2) to SUM_1.X_1
 else
 if (((I+(N+1)) mod 2)=0) then
 send (X_1+X_2) to X_2.X_1{((I+(N+1)) div 2)}
 else
 send (X_1+X_2) to X_2.X_2{((I+N) div 2)};

execution of ordinary control flow programs. The problem of translating arbitrary

control flow program to data flow was considered accordingly [11] as a dataflow

simulation of sequential execution over the memory. Minimal reordering is allowed

that does not violate normal order of reads and writes.

In contrast, we consider dataflow as an independent model of programming and do

not even intend the dataflow language to mimic ordinary programming languages (as

Id or Sisal do). The key feature of our incarnation of the dataflow idea is the way we

use context; it is an object of total programmer‘s control that is used primarily for

addressing. Usually, the programs should be totally redesigned. In fact, there exist a

lot of program examples written in our model of computation that radically differ

from their habitual view.

There exists also a bulk of papers in which the same class of affine programs or its

minor extensions is translated into other computation models. In [12] process

networks (PN) are used as a target programming model. To accomplish the translation

their compiler needs to extract more information than ours; specifically, they have to

statically order the data streams between processes, whereas in our model all

necessary correspondence is provided at run time on the base of iteration indices

supplied within token‘ tags. Also, in [2] a code for CUDA is generated with the aid of

additional extraction (from the standard polytope model) of multi-level tiled parallel

schedule. In contrast, we only build the inverted form of the dataflow graph of the

source program (which is in fact very similar to Z-polyhedral model [13]) and just

treat that graph as a code for dataflow machine. We needn‘t generate any parallel

schedule at compile time. All actual parallelism is extracted on the fly by runtime

system which must be implemented in hardware for good performance [14,15].

11 Future work

So, the time schedule is not needed to be provided statically for our computation

model. However, the compiler must provide the space schedule or distribution of

virtual computation space across physical processor space. The distribution function

is a (usually affine) function that maps the total virtual address space of node

instances onto (probably multi-dimentional) space of processor elements (PE)

numbers. This function must be provided either by the user (in terms of source

iteration space) or generated by the compiler (may be with user hints) . The two

following criteria must be satisfied:

 the workload is uniformly balanced;

 the amount of communication is minimized.

At present, only a strictly affine programs are allowed. Moreover, the whole

program unit (subroutine) must be affine. We plan to lift some of restrictions and to

allow for

 non-affine conditional expressions in if-statements;

 non-unit step in do-loops;

 using whole division in affine expressions;

 some local variables in affine expressions;

 using affine subprograms with side-effects.

The work was supported by Russian Academy of Sciences Presidium Program for

Fundamental Research No.15 ―Fundamental Problems of System Programming‖ in

2009-2011.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and

Tools (2nd Edition). Addison-Wesley (2006).

2. Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic C-to-CUDA Code Generation

for Affine Programs. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 244-263, Springer,

Heidelberg (2010).

3. Voevodin, V.V., and Voevodin, Vl.V.: Parallel Computations (Параллельные

вычисления). BKhV-Peterburg, St. Petersburg (2004) [in Russian].

4. Klimov, Ark.V.: The Use of Selection Trees for Describing States in Parallelizing

Compiler. In: Proceedings of All-Russian Scientific Conference ―Scientific service in

Internet‖, pp.238-240 MSU (2009) [in Russian].

5. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du I

congrès de Mathématiciens des Pays Slaves, pp. 92–101, Warszawa (1929),.

6. Feautrier, P.: Parametric Integer Programming. In: RAIRO Recherche Opérationnelle.

22:243-268 (September 1988).

7. Pugh, W.: The Omega Test: a fast and practical integer programming algorithm for

dependence analysis. In: Proceedings of the 1991 ACM/IEEE conference on

Supercomputing ACM New York, NY, USA (1991).

8. Feautrier, P.: Dataflow Analysis of Array and Scalar References. In: International Journal

of Parallel Programming, V 20, N 1, pp. 23—53 (1991).

9. Maydan, D.E., Hennessy, J.L., Lam, M.S.: Efficient and Exact Data Dependence Analysis.

In: ACM SIGPLAN‘91 Conference on Programming Language Design and

Implementation, pp.1-14 (June 1991).

10. Maslov, V.: Lazy Array Data-Flow Dependence Analysis. In: Proceedings of the 21st

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pp. 311-325 (January 1994).

11. Beck, M., Johnson, R., Pingaly, K.: From Control flow to Dataflow. In: Journal of Parallel

and Distributed computing, V 12 Issue 2, pp. 118-129 (June 1991).

12. Turjan, A., Kienhuis, B., Deprettere, E.: Translating affine nested-loop programs to process

networks. In: Proceedings of the International Conference on Compiler, Architecture, and

Synthesis for Embedded Systems, pp. 220-229, Washington D.C., USA, (Sept. 2004).

13. Gautam Gupta, Rajopadhue, S.: The Z-polyhedral model. In: Proceedings of the 12th ACM

SIGPLAN symposium on Principles and practice of parallel programming, ACM New

York, NY, USA (2007).

14. Burtsev, V.S.: ―Vybor novoj sistemy organizacii vypolneniya vysokoparallel‘nyh

vychislitel‘nyh processov, primery vozmozhnyh arhitekturnyh reshenij postroeniya

superEVM‖ (The choice of a new organization system of execution of highly-parallel

computation processes and examples of possible supercomputer architecture solutions), //

In: Burtsev, V.S. Parallelizm vychislitelnyh processov i razvitie arhitektury superEVM,

IVVS RAS, Moscow, pp. 41-78 (1997) [in Russian].

15. Stempkovsky, A.L., Levchenko, N.N., Okunev, S.A., Tsvetkov, V.V.: Parallel dataflow

computing system – the further development of architecture and the structural organization

of the computing system with automatic distribution of resources. In: ―Informatsionnye

tekhnologii‖, N 10, pp. 2–7 (2008) [in Russian].

http://agora.guru.ru/abrau2009/pdf/238_NSSI_2009_Abrau-2009.pdf
http://agora.guru.ru/abrau2009/pdf/238_NSSI_2009_Abrau-2009.pdf
http://agora.guru.ru/abrau2009/pdf/238_NSSI_2009_Abrau-2009.pdf
http://novtex.ru/IT/it2008/number_10_annot.htm#2
http://novtex.ru/IT/it2008/number_10_annot.htm#2
http://novtex.ru/IT/it2008/number_10_annot.htm#2
http://novtex.ru/IT/it2008/number_10_annot.htm#2

